Search results
Results from the WOW.Com Content Network
Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...
An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular. [ 3 ] A convex quadrilateral with diagonal lengths p {\displaystyle p} and q {\displaystyle q} and bimedian lengths m {\displaystyle m} and n {\displaystyle n} is equidiagonal if and only if [ 4 ] : Prop.1
The golden rhombus. In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio: [1] = = + Equivalently, it is the Varignon parallelogram formed from the edge midpoints of a golden rectangle. [1]
Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid, with an axis of symmetry through the midpoints of two sides. These include as special cases the rhombus and the rectangle respectively, and the square, which is a special case of both. [1]
Rectangle – A parallelogram with four angles of equal size (right angles).; Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics.
Rhombus, rhomb: [1] all four sides are of equal length (equilateral). An equivalent condition is that the diagonals perpendicularly bisect each other. Informally: "a pushed-over square" (but strictly including a square, too).
The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel. A square has Schläfli symbol {4}. A truncated square, t{4}, is an octagon, {8}.
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.