Search results
Results from the WOW.Com Content Network
Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...
Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4] Rectangle: all four angles are right angles (equiangular). An equivalent condition is that the diagonals bisect each other, and are equal in length. Rectangles include squares and oblongs.
A quadrilateral is equidiagonal if and only if [5]: p.19, [4]: Cor.4 =. This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral.
Two circles are congruent if they have the same diameter. In this sense, the sentence "two plane figures are congruent" implies that their corresponding characteristics are congruent (or equal) including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters, and areas.
[2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...
Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals. (This is the parallelogram law.) It has rotational symmetry of order 2. The sum of the distances from any interior point to the sides is independent of the location of the point. [4]
The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...
According to the characterization of these quadrilaterals, the two red squares on two opposite sides of the quadrilateral have the same total area as the two blue squares on the other pair of opposite sides. In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles.