Search results
Results from the WOW.Com Content Network
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation + =,
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. [1] n-ellipses go by numerous other names, including multifocal ellipse, [2] polyellipse, [3] egglipse, [4] k-ellipse, [5] and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846 ...
The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.
Therefore (analogously to the foci of an ellipse) one considers the focal conics of a triaxial ellipsoid as the (infinite many) foci and calls them the focal curves of the ellipsoid. [ 14 ] The converse statement is true, too: if one chooses a second string of length l and defines
The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.
Their combined length P 1 P + PP 2 = P 1 P 2 = L is the distance between circles k 1 and k 2, and is independent of the choice of P; thus any point on the ellipse has PF 1 + PF 2 = L. This construction shows how the focal points of an ellipse can be found using the Dandelin spheres.