enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Development of a formulation of arc length suitable for applications to mathematics and the sciences is a focus of calculus. In the most basic formulation of arc length for a parametric curve (thought of as the trajectory of a particle), the arc length is obtained by integrating the speed of the particle over the path.

  3. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  4. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures ...

  5. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    Logarithmic spiral (pitch 10°) A section of the Mandelbrot set following a logarithmic spiralA logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature.

  6. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  7. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    Equivalently, in polar coordinates (r, θ) it can be described by the equation = with real number b. Changing the parameter b controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.

  8. Tractrix - Wikipedia

    en.wikipedia.org/wiki/Tractrix

    The arc length of one branch between x = x 1 and x = x 2 is a ln ⁠ y 1 / y 2 ⁠. The area between the tractrix and its asymptote is ⁠ π a 2 / 2 ⁠ , which can be found using integration or Mamikon's theorem .

  9. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve: