Search results
Results from the WOW.Com Content Network
The characterization technique optical microscopy showing the micron scale dendritic microstructure of a bronze alloy. Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science ...
The characterization of mechanical properties in polymers typically refers to a measure of the strength, elasticity, viscoelasticity, and anisotropy of a polymeric material. The mechanical properties of a polymer are strongly dependent upon the Van der Waals interactions of the polymer chains, and the ability of the chains to elongate and align ...
Materials are of the utmost importance for engineers (or other applied fields) because usage of the appropriate materials is crucial when designing systems. As a result, materials science is an increasingly important part of an engineer's education. Materials physics is the use of physics to describe
The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. [1] Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties.
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials.It is most useful for studying the viscoelastic behavior of polymers.A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus.
Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials.It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization.
Modern simultaneous CHNS combustion analyzer. Elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elemental and sometimes isotopic composition.
This characterization is imperative because many materials that are expected to be nano-sized are actually aggregated in solutions. Some of methods are based on light scattering. Others apply ultrasound, such as ultrasound attenuation spectroscopy for testing concentrated nano-dispersions and microemulsions. [53]