enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product representation of a graph - Wikipedia

    en.wikipedia.org/wiki/Dot_product_representation...

    Let G be a graph with vertex set V. Let F be a field, and f a function from V to F k such that xy is an edge of G if and only if f(x)·f(y) ≥ t. This is the dot product representation of G. The number t is called the dot product threshold, and the smallest possible value of k is called the dot product dimension. [1]

  3. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of ...

  4. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.

  5. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    This angle may be calculated from the dot product of the two vectors, defined as a ⋅ b = ‖ a ‖ ‖ b ‖ cos θ where ‖ a ‖ denotes the length of vector a. As shown in the diagram, the dot product here is –1 and the length of each vector is √ 3, so that cos θ = – ⁠ 1 / 3 ⁠ and the tetrahedral bond angle θ = arccos ...

  6. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.

  7. Plot (graphics) - Wikipedia

    en.wikipedia.org/wiki/Plot_(graphics)

    The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.

  8. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    2. In geometry and linear algebra, denotes the dot product. 3. Placeholder used for replacing an indeterminate element. For example, saying "the absolute value is denoted by | · |" is perhaps clearer than saying that it is denoted as | |. ± (plus–minus sign) 1. Denotes either a plus sign or a minus sign. 2.