Search results
Results from the WOW.Com Content Network
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer. [5] Transition to turbulence, however, can be delayed. [6] An example of this would be a fan blowing upward on a hot plate.
Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection , thermal radiation , and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very ...
This convective fluid can be either a liquid or a gas. For heat transfer from the outer surface of the body, the convection mechanism is dependent on the surface area of the body, the velocity of the air, and the temperature gradient between the surface of the skin and the ambient air. [44] The normal temperature of the body is approximately 37 ...
Convection, especially Rayleigh–Bénard convection, where the convecting fluid is contained by two rigid horizontal plates, is a convenient example of a pattern-forming system. When heat is fed into the system from one direction (usually below), at small values it merely diffuses ( conducts ) from below upward, without causing fluid flow.
(Acoustic phonons are in-phase movements of atoms about their equilibrium positions, while optical phonons are out-of-phase movement of adjacent atoms in the lattice.) Optical phonons have higher energies (frequencies), but make smaller contribution to conduction heat transfer, because of their smaller group velocity and occupancy.
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Where the plates meet, their relative motion determines the type of plate boundary (or fault): convergent, divergent, or transform. The relative movement of the plates typically ranges from zero to 10 cm annually. [5] Faults tend to be geologically active, experiencing earthquakes, volcanic activity, mountain-building, and oceanic trench formation.