Search results
Results from the WOW.Com Content Network
A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.
In organic chemistry, covalent bonding is much more common than ionic bonding. Covalent bonding also includes many kinds of interactions, including σ-bonding, π-bonding, metal-to-metal bonding, agostic interactions, bent bonds, three-center two-electron bonds and three-center four-electron bonds. [2] [3] The term covalent bond dates from 1939 ...
Solid-phase electrical conductivity: Variable, [6] depending on the nature of the bonding: network solids in which all electrons are used for sigma bonds (e.g. diamond, quartz) are poor conductors, as there are no delocalized electrons. However, network solids with delocalized pi bonds (e.g. graphite) or dopants can exhibit metal-like conductivity.
In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group
The chief use of ethane is the production of ethylene (ethene) by steam cracking. Steam cracking of ethane is fairly selective for ethylene, while the steam cracking of heavier hydrocarbons yields a product mixture poorer in ethylene and richer in heavier alkenes (olefins), such as propene (propylene) and butadiene, and in aromatic hydrocarbons.
The π-bond in the ethylene molecule is responsible for its useful reactivity. The double bond is a region of high electron density, thus it is susceptible to attack by electrophiles. Many reactions of ethylene are catalyzed by transition metals, which bind transiently to the ethylene using both the π and π* orbitals. [citation needed]
The inductive effect is the transmission of charge through covalent bonds and Bent's rule provides a mechanism for such results via differences in hybridisation. In the table below, [ 26 ] as the groups bonded to the central carbon become more electronegative, the central carbon becomes more electron-withdrawing as measured by the polar ...
This hydrogen bond leads a string of acetic acid molecules hydrogen bonding to minimize free energy. [10] [26] These strings of acetic acid molecules then stack together to build solids. The halogen bonding between the bromine and 1,4-dioxane molecules partially guides the organization of the crystal lattice structure.