enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity .

  3. Word n-gram language model - Wikipedia

    en.wikipedia.org/wiki/Word_n-gram_language_model

    If only one previous word is considered, it is called a bigram model; if two words, a trigram model; if n − 1 words, an n-gram model. [2] Special tokens are introduced to denote the start and end of a sentence s {\displaystyle \langle s\rangle } and / s {\displaystyle \langle /s\rangle } .

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. Word2vec was developed by Tomáš Mikolov and colleagues at Google and published in 2013. Word2vec represents a word as a high-dimension vector of numbers which capture relationships between words.

  5. Document-term matrix - Wikipedia

    en.wikipedia.org/wiki/Document-term_matrix

    which shows which documents contain which terms and how many times they appear. Note that, unlike representing a document as just a token-count list, the document-term matrix includes all terms in the corpus (i.e. the corpus vocabulary), which is why there are zero-counts for terms in the corpus which do not also occur in a specific document.

  6. Word count - Wikipedia

    en.wikipedia.org/wiki/Word_count

    Word count is commonly used by translators to determine the price of a translation job. Word counts may also be used to calculate measures of readability and to measure typing and reading speeds (usually in words per minute). When converting character counts to words, a measure of 5 or 6 characters to a word is generally used for English. [1]

  7. Lexical density - Wikipedia

    en.wikipedia.org/wiki/Lexical_density

    The lexical density is the proportion of content words (lexical items) in a given discourse. It can be measured either as the ratio of lexical items to total number of words, or as the ratio of lexical items to the number of higher structural items in the sentences (for example, clauses).

  8. Lexical analysis - Wikipedia

    en.wikipedia.org/wiki/Lexical_analysis

    Simple examples include semicolon insertion in Go, which requires looking back one token; concatenation of consecutive string literals in Python, [7] which requires holding one token in a buffer before emitting it (to see if the next token is another string literal); and the off-side rule in Python, which requires maintaining a count of indent ...

  9. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})