Search results
Results from the WOW.Com Content Network
Four basic configurations which have used vortex lift are, in chronological order, the 60-degree delta wing; the ogive delta wing with its sharply-swept leading edge at the root; the moderately-swept wing with a leading-edge extension, which is known as a hybrid wing; and the sharp-edge forebody, or vortex-lift strake. [7]
When a wing generates lift, it deflects air downward, and to do this it must exert a downward force on the air. Newton's third law requires that the air must exert an equal upward force on the wing. An airfoil generates lift by exerting a downward force on the air as it flows past.
For a given wing area, a high aspect ratio wing will produce less induced drag than a wing of low aspect ratio. [16] While induced drag is inversely proportional to the square of the wingspan, not necessarily inversely proportional to aspect ratio, if the wing area is held constant, then induced drag will be inversely proportional to aspect ratio.
Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. [1]: 5.14 The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. [2]: 369 Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips.
The downstroke of the wings generates lift and the wings are folded in during upstroke. When a bird flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward by the flight muscles to provide thrust , which counteracts drag and increases its speed, which has the effect of also increasing lift to ...
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies.
First, the mechanism relies on a wing-wing interaction, as a single wing motion does not produce sufficient lift. [ 20 ] [ 21 ] [ 22 ] As the wings rotate about the trailing edge in the flinging motion, air rushes into the created gap and generates a strong leading edge vortex, and a second one developing at the wingtips.