Search results
Results from the WOW.Com Content Network
Protein structure is the three ... Van der Waals forces, ... A structural domain is an element of the protein's overall structure that is self-stabilizing and often ...
Three-dimensional structure [1] of an alpha helix in the protein crambin. An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is ...
A protein contact map represents the distance between all possible amino acid residue pairs of a three-dimensional protein structure using a binary two-dimensional matrix. For two residues i {\displaystyle i} and j {\displaystyle j} , the i j {\displaystyle ij} element of the matrix is 1 if the two residues are closer than a predetermined ...
It is a most commonly observed contribution to the stability to the entropically unfavorable folded conformation of proteins. Although non-covalent interactions are known to be relatively weak interactions, small stabilizing interactions can add up to make an important contribution to the overall stability of a conformer. [ 1 ]
Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2] Non-covalent interactions [4] are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids.
A network of alternative conformations in catalase (Protein Data Bank code: 1gwe) with diverse properties. Multiple phenomena define the network: van der Waals interactions (blue dots and line segments) between sidechains, a hydrogen bond (dotted green line) through a partial-occupancy water (brown), coupling through the locally mobile backbone (black), and perhaps electrostatic forces between ...
The prototype of a protein disulfide bond is the two-amino-acid peptide cystine, which is composed of two cysteine amino acids joined by a disulfide bond. The structure of a disulfide bond can be described by its χ ss dihedral angle between the C β −S γ −S γ −C β atoms, which is usually close to ±90°.
The folding funnel hypothesis is closely related to the hydrophobic collapse hypothesis, under which the driving force for protein folding is the stabilization associated with the sequestration of hydrophobic amino acid side chains in the interior of the folded protein. This allows the water solvent to maximize its entropy, lowering the total ...