enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  3. Moore machine - Wikipedia

    en.wikipedia.org/wiki/Moore_machine

    As Moore and Mealy machines are both types of finite-state machines, they are equally expressive: either type can be used to parse a regular language.. The difference between Moore machines and Mealy machines is that in the latter, the output of a transition is determined by the combination of current state and current input (as the domain of ), as opposed to just the current state (as the ...

  4. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Therefore, ones' complement and two's complement representations of the same negative value will differ by one. Note that the ones' complement representation of a negative number can be obtained from the sign–magnitude representation merely by bitwise complementing the magnitude (inverting all the bits after the first). For example, the ...

  5. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    In the decimal numbering system, the radix complement is called the ten's complement and the diminished radix complement the nines' complement. In binary, the radix complement is called the two's complement and the diminished radix complement the ones' complement. The naming of complements in other bases is similar.

  6. Deterministic finite automaton - Wikipedia

    en.wikipedia.org/wiki/Deterministic_finite_automaton

    In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running ...

  7. Three-way comparison - Wikipedia

    en.wikipedia.org/wiki/Three-way_comparison

    Some machines have signed integers based on a sign-and-magnitude or ones' complement representation (see signed number representations), both of which allow a differentiated positive and negative zero. This does not violate trichotomy as long as a consistent total order is adopted: either −0 = +0 or −0 < +0 is valid.

  8. Nondeterministic finite automaton - Wikipedia

    en.wikipedia.org/wiki/Nondeterministic_finite...

    On the consumption of the last input symbol, if one of the current states is a final state, the machine accepts the string. A string of length n can be processed in time O(ns 2), [15] and space O(s). Create multiple copies. For each n way decision, the NFA creates up to n−1 copies of the machine. Each will enter a separate state.

  9. Edward F. Moore - Wikipedia

    en.wikipedia.org/wiki/Edward_F._Moore

    Edward Forrest Moore (November 23, 1925 in Baltimore, Maryland – June 14, 2003 in Madison, Wisconsin) was an American professor of mathematics and computer science, the inventor of the Moore finite state machine, and an early pioneer of artificial life.