Search results
Results from the WOW.Com Content Network
Scalar–tensor–vector gravity theory, [2] also known as MOdified Gravity (MOG), is based on an action principle and postulates the existence of a vector field, while elevating the three constants of the theory to scalar fields. In the weak-field approximation, STVG produces a Yukawa-like modification of the gravitational force due to a point ...
Tensor–vector–scalar gravity (TeVeS), [1] developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm. [2] [3] The main features of TeVeS can be summarized as follows: As it is derived from the action principle, TeVeS respects conservation laws;
Its generalization with a 5th variable component of the metric that leads to a variable gravitational constant was first given by Pascual Jordan. [5] [6] Brans–Dicke theory is a scalar-tensor theory, not a scalar theory, meaning that it represents the gravitational interaction using both a scalar field and a tensor field. We mention it here ...
Although not normally considered a Scalar–Tensor theory of gravity, the 5 by 5 metric of Kaluza–Klein reduces to a 4 by 4 metric and a single scalar. So if the 5th element is treated as a scalar gravitational field instead of an electromagnetic field then Kaluza–Klein can be considered the progenitor of Scalar–Tensor theories of gravity ...
An action of such a gravitational scalar–tensor theory can be written as follows: = [() () + (,)], where is the metric determinant, is the Ricci scalar constructed from the metric , is a coupling constant with the dimensions , () is the scalar-field potential, is the material Lagrangian and represents the non-gravitational fields.
In physics, the Brans–Dicke theory of gravitation (sometimes called the Jordan–Brans–Dicke theory) is a competitor to Einstein's general theory of relativity.It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity.
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
The Einstein tensor allows the Einstein field equations to be written in the concise form: + =, where is the cosmological constant and is the Einstein gravitational constant. From the explicit form of the Einstein tensor , the Einstein tensor is a nonlinear function of the metric tensor, but is linear in the second partial derivatives of the ...