Search results
Results from the WOW.Com Content Network
Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems. In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1]
The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] Angles in polar notation are generally expressed in either degrees or radians (2 π rad being equal to 360°).
View from the Swabian Jura to the Alps. Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude.
L 1, L 2: longitude of the points; L = L 2 − L 1: difference in longitude of two points; λ: Difference in longitude of the points on the auxiliary sphere; α 1, α 2: forward azimuths at the points; α: forward azimuth of the geodesic at the equator, if it were extended that far; s: ellipsoidal distance between the two points; σ: angular ...
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system— shown here in the mathematics convention —the sphere is adapted as a unit sphere , where the radius is set to unity and then can generally be ...
In that case, a and b are π / 2 − φ 1,2 (that is, the, co-latitudes), C is the longitude separation λ 2 − λ 1, and c is the desired d / R . Noting that sin( π / 2 − φ) = cos(φ), the haversine formula immediately follows. To derive the law of haversines, one starts with the spherical law of cosines: