Search results
Results from the WOW.Com Content Network
The mechanisms of inflation within these pocket universes could function in a variety of manners, such as slow-roll inflation, undergoing cycles of cosmological evolution, or resembling of the Galilean genesis or other 'emergent' universe scenarios. Lehners goes on to discuss which one of these types of universes we live in, and how that is ...
Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory. According to eternal inflation, the inflationary phase of the universe's expansion lasts forever throughout most of the universe .
A paper by Coleman and De Luccia that attempted to include simple gravitational assumptions into these theories noted that if this was an accurate representation of nature, then the resulting universe "inside the bubble" in such a case would appear to be extremely unstable and would almost immediately collapse:
Space has fascinated humanity for centuries - from the mystery of the stars to the groundbreaking discoveries that push the boundaries of our understanding. Whether you're an armchair astronomer ...
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The concept of an expanding universe was scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
The expansion of the universe can be understood as resulting from an initial condition in which the contents of the universe are flying apart. The mutual gravitational attraction of the matter and radiation within the universe gradually slows this expansion over time, but their density is too low to prevent continued expansion. [20]
The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. [1] [2] [3] The field, originally postulated by Alan Guth, [1] provides a mechanism by which a period of rapid expansion from 10 −35 to 10 −34 seconds after the initial expansion can be generated, forming a universe not inconsistent with observed spatial ...
In the 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe. [33]: 8.5.1 Harrison, [34] Peebles and Yu, [35] and Zel'dovich [36] realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level of 10 −4 or 10 −5.