Search results
Results from the WOW.Com Content Network
Trifluorophosphine (PF 3) is a strong π-acid with bonding properties akin to those of the carbonyl ligand. [8] In early work, phosphine ligands were thought to utilize 3 d orbitals to form M-P pi-bonding, but it is now accepted that d-orbitals on phosphorus are not involved in bonding. [ 9 ]
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C 6 H 5) 3 and often abbreviated to P Ph 3 or Ph 3 P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry.
The metal–ligand bond can be further stabilised by a formal donation of electron density back to the ligand in a process known as back-bonding. In this case a filled, central-atom-based orbital donates density into the LUMO of the (coordinated) ligand. Carbon monoxide is the preeminent example a ligand that engages metals via back-donation.
Triphenylphosphite is a notable example of polyamorphism in organic compounds, namely it exists in two different amorphous forms at temperatures about 200 K. [5] One polymorphic modification of triphenyl phosphite was obtained by means of crystallization in ionic liquids.
Ph 3 PO is structurally related to POCl 3. [2] As established by X-ray crystallography, the geometry around P is tetrahedral, and the P-O distance is 1.48 Å. [3] Other modifications of Ph 3 PO have been found: For example, a monoclinic form crystalizes in the space group P2 1 /c with Z = 4 and a = 15.066(1) Å, b = 9.037(2) Å, c = 11.296(3) Å, and β = 98.47(1)°.The orthorhombic ...
Vaska's complex is the trivial name for the chemical compound trans-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO)[P(C 6 H 5) 3] 2.This square planar diamagnetic organometallic complex consists of a central iridium atom bound to two mutually trans triphenylphosphine ligands, carbon monoxide and a chloride ion.
Ligand-modified versions of Stryker's reagent have been reported. By changing the ligand to, e.g., P(O-iPr) 3 the selectivity can be improved significantly. [ 8 ] In addition, Lipshutz et al., have shown that the addition of a bidentate, achiral bis-phosphine ligand on the Cu center can lead to substrate-to-ligand ratios typically on the order ...
The four phosphorus atoms are at the corners of a tetrahedron surrounding the palladium(0) center. This structure is typical for four-coordinate 18 e − complexes. [2] The corresponding complexes Ni(PPh 3) 4 and Pt(PPh 3) 4 are also well known.