enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters ...

  3. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  4. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In practice, as in most of statistics, the difficulties and subtleties are associated with modeling the probability distributions effectively—in this case, ⁡ (= =). The Bayes classifier is a useful benchmark in statistical classification .

  5. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms.

  6. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Additional sources of bias- for example, in the context of model selection—may be more subtle. [ 23 ] [ 31 ] At the same time, some of the criticisms that have been directed at the ABC methods, in particular within the field of phylogeography , [ 30 ] [ 32 ] [ 33 ] are not specific to ABC and apply to all Bayesian methods or even all ...

  7. Dirichlet process - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_process

    In a Bayesian nonparametric model, the prior and posterior distributions are not parametric distributions, but stochastic processes. [7] The fact that the Dirichlet distribution is a probability distribution on the simplex of sets of non-negative numbers that sum to one makes it a good candidate to model distributions over distributions or ...

  8. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    In a Bayesian setting, this comes up in various contexts: computing the prior or posterior predictive distribution of multiple new observations, and computing the marginal likelihood of observed data (the denominator in Bayes' law). When the distribution of the samples is from the exponential family and the prior distribution is conjugate, the ...

  9. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    An example of Bayesian design for linear dynamical model discrimination is given in Bania (2019). [9] Since (;), was difficult to calculate, its lower bound has been used as a utility function. The lower bound is then maximized under the signal energy constraint.