enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mechanical equivalent of heat - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equivalent_of_heat

    Von Mayer also published a numerical value for mechanical equivalent of heat in 1845 but his experimental method wasn't as convincing. Though a standardised value of 4.1860 J·cal −1 was established in the early 20th century, in the 1920s, it was ultimately realised that the constant is simply the specific heat of water, a quantity that ...

  3. Péclet number - Wikipedia

    en.wikipedia.org/wiki/Péclet_number

    where k is the thermal conductivity, ρ the density, and c p the specific heat capacity. In engineering applications the Péclet number is often very large. In such situations, the dependency of the flow upon downstream locations is diminished, and variables in the flow tend to become "one-way" properties. Thus, when modelling certain ...

  4. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    This value is inversely related to the total cross-sectional area of the blood vessel and also differs per cross-section, because in normal condition the blood flow has laminar characteristics. For this reason, the blood flow velocity is the fastest in the middle of the vessel and slowest at the vessel wall.

  5. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...

  6. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    A heat engine is a system that performs the conversion of a flow of thermal energy (heat) to mechanical energy to perform mechanical work. [ 32 ] [ 33 ] A thermocouple is a temperature-measuring device and a widely used type of temperature sensor for measurement and control, and can also be used to convert heat into electric power.

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume:

  9. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    In 1845, Joule published a paper entitled The Mechanical Equivalent of Heat, in which he specified a numerical value for the amount of mechanical work required to "produce a unit of heat", based on heat production by friction in the passage of electricity through a resistor and in the rotation of a paddle in a vat of water. [33]