Search results
Results from the WOW.Com Content Network
Given these assumptions, the flux of oxidant through each of the three phases can be expressed in terms of concentrations, material properties, and temperature. = = = where: is the gas-phase transport coefficient, is the concentration of oxidant in the surrounding atmosphere, is the concentration of oxidant in the surface of the oxide, is the concentration of the oxidant at the interface ...
Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.
In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's laws of diffusion). In mathematics, it is related to Markov processes , such as random walks , and applied in many other fields, such as materials science , information ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...
In 1970, Solid State Measurements was founded to manufacture spreading resistance profiling tools and in 1974, Solecon Labs was founded to provide spreading resistance profiling services. In 1980, Dickey developed a practical method of determining p- or n-type using the spreading resistance tool.
Darken’s equations can be applied to almost any scenario involving the diffusion of two different components that have different diffusion coefficients. This holds true except in situations where there is an accompanying volume change in the material because this violates one of Darken’s critical assumptions that atomic volume is constant.
Reaction–diffusion systems are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out ...