Search results
Results from the WOW.Com Content Network
Aldehyde molecules have a central carbon atom that is connected by a double bond to oxygen, a single bond to hydrogen and another single bond to a third substituent, which is carbon or, in the case of formaldehyde, hydrogen. The central carbon is often described as being sp 2-hybridized. The aldehyde group is somewhat polar.
Common name for alcohol Common name for aldehyde Common name for acid Common name for ketone 1: Meth-Methyl alcohol (wood alcohol) Formaldehyde: Formic acid NA 2: Eth-Ethyl alcohol (grain alcohol) Acetaldehyde: Acetic acid (vinegar) NA 3: Prop-Propyl alcohol: Propionaldehyde: Propionic acid Acetone/dimethyl ketone 4: But-Butyl alcohol ...
A major factor in determining the reactivity of acyl derivatives is leaving group ability, which is related to acidity. Weak bases are better leaving groups than strong bases; a species with a strong conjugate acid (e.g. hydrochloric acid) will be a better leaving group than a species with a weak conjugate acid (e.g. acetic acid).
The joining of two aldehyde sugars to form a disaccharide removes the −OH from the carboxy group at the aldehyde end of one sugar. The creation of a peptide bond to link two amino acids to make a protein removes the −OH from the carboxy group of one amino acid. [citation needed]
This reaction is useful for the separation and purification of aldehydes. [7] The bisulfite adducts are charged and so are more soluble in polar solvents. The reaction can be reversed in base or strong acid. [8] Examples of such procedures are described for benzaldehyde, [9] 2-tetralone, [10] citral, [11] the ethyl ester of pyruvic acid [12 ...
In addition to the use of strong bases, enolates can be generated using a Lewis acid and a weak base ("soft conditions"): . For deprotonation to occur, the stereoelectronic requirement is that the alpha-C-H sigma bond must be able to overlap with the pi* orbital of the carbonyl:
Imines are related to ketones and aldehydes by replacement of the oxygen with an NR group. When R = H, the compound is a primary imine, when R is hydrocarbyl, the compound is a secondary imine. If this group is not a hydrogen atom, then the compound can sometimes be referred to as a Schiff base. [9]
A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. [ 1 ] [ 2 ] [ 3 ] : 16–22 Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides , carbonates and metal carbonyls , [ 4 ] and in organic compounds such as alcohols , ethers , and carbonyl compounds .