Search results
Results from the WOW.Com Content Network
The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;
The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle: () = (()) = (()). The radius R does not appear in the last quantity. Therefore, the area of the horizontal cross-section at height y {\displaystyle y} does not depend on R {\displaystyle R} , as long as y ≤ h 2 ≤ R {\displaystyle y\leq ...
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...
What can be stated is that as the central angle gets smaller (or alternately the radius gets larger), the area a rapidly and asymptotically approaches . If θ ≪ 1 {\displaystyle \theta \ll 1} , a = 2 3 c ⋅ h {\displaystyle a={\tfrac {2}{3}}c\cdot h} is a substantially good approximation.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
For all these radius ratios a compact packing is known that achieves the maximum possible packing fraction (above that of uniformly-sized discs) for mixtures of discs with that radius ratio. [9] All nine have ratio-specific packings denser than the uniform hexagonal packing, as do some radius ratios without compact packings. [10]