enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    One of the earliest applications of dynamic programming is the Held–Karp algorithm, which solves the problem in time (). [24] This bound has also been reached by Exclusion-Inclusion in an attempt preceding the dynamic programming approach. Solution to a symmetric TSP with 7 cities using brute force search.

  3. Held–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Held–Karp_algorithm

    The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...

  4. Concorde TSP Solver - Wikipedia

    en.wikipedia.org/wiki/Concorde_TSP_Solver

    According to Mulder & Wunsch (2003), Concorde “is widely regarded as the fastest TSP solver, for large instances, currently in existence.” In 2001, Concorde won a 5000 guilder prize from CMG for solving a vehicle routing problem the company had posed in 1996. [7] Concorde requires a linear programming solver and only supports QSopt [8] and ...

  5. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.

  6. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    Form the subgraph of G using only the vertices of O: Construct a minimum-weight perfect matching M in this subgraph Unite matching and spanning tree T ∪ M to form an Eulerian multigraph Calculate Euler tour Here the tour goes A->B->C->A->D->E->A. Equally valid is A->B->C->A->E->D->A. Remove repeated vertices, giving the algorithm's output.

  7. Bottleneck traveling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Bottleneck_traveling...

    In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction). The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem ...

  8. Bitonic tour - Wikipedia

    en.wikipedia.org/wiki/Bitonic_tour

    It is a standard exercise in dynamic programming to devise a polynomial time algorithm that constructs the optimal bitonic tour. [ 1 ] [ 2 ] Although the usual method for solving it in this way takes time O ( n 2 ) {\displaystyle O(n^{2})} , a faster algorithm with time O ( n log 2 ⁡ n ) {\displaystyle O(n\log ^{2}n)} is known.

  9. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    Also, a dynamic programming algorithm of Bellman, Held, and Karp can be used to solve the problem in time O(n 2 2 n). In this method, one determines, for each set S of vertices and each vertex v in S, whether there is a path that covers exactly the vertices in S and ends at v.