Search results
Results from the WOW.Com Content Network
Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.
The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.
Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .
In mathematics, Hadamard's inequality (also known as Hadamard's theorem on determinants [1]) is a result first published by Jacques Hadamard in 1893. [2] It is a bound on the determinant of a matrix whose entries are complex numbers in terms of the lengths of its column vectors.
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
For example, the determinant of an n × n matrix is an SL(n) 2 invariant and Cayley's hyperdeterminant for a 2 × 2 × 2 hypermatrix is an SL(2) 3 invariant. A more familiar property of a determinant is that if you add a multiple of a row (or column) to a different row (or column) of a square matrix then its determinant is unchanged.
When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]