enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    In mathematical logic and philosophy, Skolem's paradox is the apparent contradiction that a countable model of first-order set theory could contain an uncountable set. The paradox arises from part of the Löwenheim–Skolem theorem ; Thoralf Skolem was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the ...

  4. Uncountably infinite - Wikipedia

    en.wikipedia.org/?title=Uncountably_infinite&...

    From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Uncountable set ...

  5. Uncountable - Wikipedia

    en.wikipedia.org/?title=Uncountable&redirect=no

    This page was last edited on 27 May 2020, at 21:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...

  6. Countable set - Wikipedia

    en.wikipedia.org/wiki/Countable_set

    In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...

  7. Perfect set property - Wikipedia

    en.wikipedia.org/wiki/Perfect_set_property

    The Cantor–Bendixson theorem states that closed sets of a Polish space X have the perfect set property in a particularly strong form: any closed subset of X can be written uniquely as the disjoint union of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the ...

  8. Wikipedia : Reference desk/Archives/Mathematics/2006 September 26

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    1 uncountable set. 2 comments. 2 countable set. 2 comments. 3 The quadratic formula to solve x. 2 comments. 4 equivalent class. 1 comment. 5 solve equations ...

  9. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.