Search results
Results from the WOW.Com Content Network
Tritium (from Ancient Greek τρίτος (trítos) 'third') or hydrogen-3 (symbol T or 3 H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive hydrogen ...
[citation needed] In Australia products containing tritium are licence exempt if they contain less than 1 × 10 6 becquerels per gram (2.7 × 10 −5 Ci/g) tritium and have a total activity of less than 1 × 10 9 becquerels (0.027 Ci), except for in safety devices where the limit is 74 × 10 9 becquerels (2.0 Ci) total activity. [12]
Beryllium + Oxygen: 23.9 [3] Lithium + Fluorine: 23.75 [citation needed] Octaazacubane potential explosive: 22.9 [4] Hydrogen + Oxygen: 13.4 [5] Gasoline + Oxygen –> Derived from Gasoline: 13.3 [citation needed] Dinitroacetylene explosive - computed [citation needed] 9.8: Octanitrocubane explosive: 8.5 [6] 16.9 [7] Tetranitrotetrahedrane ...
Nuclear fusion reaction of two helium-4 nuclei produces beryllium-8, which is highly unstable, and decays back into smaller nuclei with a half-life of 8.19 × 10 −17 s, unless within that time a third alpha particle fuses with the beryllium-8 nucleus [3] to produce an excited resonance state of carbon-12, [4] called the Hoyle state, which ...
Here is a list of radioisotopes formed by the action of cosmic rays; the list also contains the production mode of the isotope. [4] Most cosmogenic nuclides are formed in the atmosphere, but some are formed in situ in soil and rock exposed to cosmic rays, notably calcium-41 in the table below.
C will undergo neutron capture to produce stable 13 C as well as radioactive 14 C. Unlike the 14 C produced by using uranium nitrate, the 14 C will make up only a small isotopic impurity in the overall carbon content and thus make the entirety of the carbon content unsuitable for non-nuclear uses but the 14
produced by the various p–p branches is produced via branch I while p–p II produces 16.68 percent and p–p III 0.02 percent. [1] Since half the neutrinos produced in branches II and III are produced in the first step (synthesis of a deuteron), only about 8.35 percent of neutrinos come from the later steps (see below), and about 91.65 ...
The most common isotope of helium contains two protons and two neutrons, and those of carbon, nitrogen and oxygen – six, seven and eight of each particle, respectively. However, a helium nucleus weighs less than the sum of the weights of the two heavy hydrogen nuclei which combine to make it. [6] The same is true for carbon, nitrogen and oxygen.