Search results
Results from the WOW.Com Content Network
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
Newton's method, in its original version, has several caveats: It does not work if the Hessian is not invertible. This is clear from the very definition of Newton's method, which requires taking the inverse of the Hessian. It may not converge at all, but can enter a cycle having more than 1 point. See the Newton's method § Failure analysis.
Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.
The first Dahlquist barrier states that a zero-stable and linear q-step multistep method cannot attain an order of convergence greater than q + 1 if q is odd and greater than q + 2 if q is even. If the method is also explicit, then it cannot attain an order greater than q (Hairer, Nørsett & Wanner 1993, Thm III.3.5).
In the case of positive definite matrices, the convergence rate of the MINRES method can be estimated in a way similar to that of the CG method. [3] In contrast to the CG method, however, the estimation does not apply to the errors of the iterates, but to the residual. The following applies: