Search results
Results from the WOW.Com Content Network
The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k , where k is the non-orientable genus.
In genus 2 it is a classical result that all such curves are hyperelliptic, [4] pg 298 so the moduli space can be determined completely from the branch locus of the curve using the Riemann–Hurwitz formula. Since an arbitrary genus 2 curve is given by a polynomial of the form () ()
Two different pants decompositions for the surface of genus 2. The importance of the pairs of pants in the study of surfaces stems from the following property: define the complexity of a connected compact surface of genus with boundary components to be () = +, and for a non-connected surface take the sum over all components.
The double cover X of the projective plane branched along a smooth sextic (degree 6) curve is a K3 surface of genus 2 (that is, degree 2g−2 = 2). (This terminology means that the inverse image in X of a general hyperplane in P 2 {\displaystyle \mathbf {P} ^{2}} is a smooth curve of genus 2.)
Since these parameterizing functions are doubly periodic, the elliptic curve can be identified with a period parallelogram with the sides glued together i.e. a torus. So the genus of an elliptic curve is 1. The genus–degree formula is a generalization of this fact to higher genus curves. The basic idea would be to use higher degree equations.
For example, the genus of a smooth projective curve C which is an interesting invariant of the curve, is an integer, which can be read off the dimension of the first Betti cohomology group of C. So, the motive of the curve should contain the genus information.
The genus-degree formula for plane curves can be deduced from the adjunction formula. [2] Let C ⊂ P 2 be a smooth plane curve of degree d and genus g. Let H be the class of a hyperplane in P 2, that is, the class of a line. The canonical class of P 2 is −3H.
In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous (in the compact-open topology) deformation.