enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  5. List of statements independent of ZFC - Wikipedia

    en.wikipedia.org/wiki/List_of_statements...

    On the one hand, CH implies that there exists a function on the unit square whose iterated integrals are not equal — the function is simply the indicator function of an ordering of [0, 1] equivalent to a well ordering of the cardinal ω 1. A similar example can be constructed using MA.

  6. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.

  7. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    The use of "Hilbert-style" and similar terms to describe axiomatic proof systems in logic is due to the influence of Hilbert and Ackermann's Principles of Mathematical Logic (1928). [2] Most variants of Hilbert systems take a characteristic tack in the way they balance a trade-off between logical axioms and rules of inference.

  8. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, [1] was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies.

  9. Yuri Matiyasevich - Wikipedia

    en.wikipedia.org/wiki/Yuri_Matiyasevich

    In 1972, at the age of 25, he defended his doctoral dissertation on the unsolvability of Hilbert's tenth problem. [ 7 ] From 1974 Matiyasevich worked in scientific positions at LOMI, first as a senior researcher, in 1980 he headed the Laboratory of Mathematical Logic.

  1. Related searches hilbert's tenth problem proof function calculator soup fractions comparing

    hilbert's tenth problemhilbert's problems examples
    hilbert's problems explainedhilbert's 7th degree problems