Search results
Results from the WOW.Com Content Network
A 1D optical lattice is formed by two counter-propagating laser beams of the same polarization. The beams will interfere, leading to a series of minima and maxima separated by λ / 2 {\displaystyle \lambda /2} , where λ {\displaystyle \lambda } is the wavelength of the light used to create the optical lattice.
The rectangular lattice and rhombic lattice (or centered rectangular lattice) constitute two of the five two-dimensional Bravais lattice types. [1] The symmetry categories of these lattices are wallpaper groups pmm and cmm respectively.
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]
It is straightforward to solve 1D Schrödinger equations in each of the individual layers, whose solutions are linear combinations of real or imaginary exponentials. For a large barrier thickness, tunneling is a weak perturbation with regard to the uncoupled dispersionless states, which are fully confined as well.
The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman .
The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.
The vertex arrangement of the 16-cell honeycomb is called the D 4 lattice or F 4 lattice. [2] The vertices of this lattice are the centers of the 3-spheres in the densest known packing of equal spheres in 4-space; [3] its kissing number is 24, which is also the same as the kissing number in R 4, as proved by Oleg Musin in 2003.
In crystallography, a lattice plane of a given Bravais lattice is any plane containing at least three noncollinear Bravais lattice points. Equivalently, a lattice plane is a plane whose intersections with the lattice (or any crystalline structure of that lattice) are periodic (i.e. are described by 2d Bravais lattices). [1]