Search results
Results from the WOW.Com Content Network
In computer science, a binomial heap is a data structure that acts as a priority queue. It is an example of a mergeable heap ... Fibonacci [5] [17]
In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees. It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap .
A strict Fibonacci heap with no loss. Nodes 5 and 2 are active roots. Their active subtrees are binomial trees. A strict Fibonacci heap is a single tree satisfying the minimum-heap property. That is, the key of a node is always smaller than or equal to its children. As a direct consequence, the node with the minimum key always lies at the root.
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
A (max) heap is a tree-based data structure which satisfies the heap property: for any given node C, if P is a parent node of C, then the key (the value) of P is greater than or equal to the key of C. In addition to the operations of an abstract priority queue, the following table lists the complexity of two additional logical operations:
Binary heap; B-heap; Weak heap; Binomial heap; Fibonacci heap; AF-heap; Leonardo heap; 2–3 heap; ... Many graph-based data structures are used in computer science ...
Example of a complete binary max-heap Example of a complete binary min heap. A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2]
Vuillemin invented the binomial heap [2] and Cartesian tree data structures. [3] With Ron Rivest, he proved the Aanderaa–Rosenberg conjecture, according to which any deterministic algorithm that tests a nontrivial monotone property of graphs, using queries that test whether pairs of vertices are adjacent, must perform a quadratic number of adjacency queries. [4]