Search results
Results from the WOW.Com Content Network
A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to the key of the parent. This implies that the minimum key is always at the root of one of the trees. Compared with binomial heaps, the structure of a Fibonacci heap is more flexible.
A strict Fibonacci heap is a single tree satisfying the minimum-heap property. That is, the key of a node is always smaller than or equal to its children. As a direct consequence, the node with the minimum key always lies at the root. Like ordinary Fibonacci heaps, [4] strict Fibonacci heaps possess substructures similar to binomial heaps. To ...
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
Fibonacci numbers arise in the analysis of the Fibonacci heap data structure. A one-dimensional optimization method, called the Fibonacci search technique, uses Fibonacci numbers. [74] The Fibonacci number series is used for optional lossy compression in the IFF 8SVX audio file format used on Amiga computers.
For sparse graphs, that is, graphs with far fewer than | | edges, Dijkstra's algorithm can be implemented more efficiently by storing the graph in the form of adjacency lists and using a self-balancing binary search tree, binary heap, pairing heap, Fibonacci heap or a priority heap as a priority queue to implement extracting minimum efficiently.
For graphs of even greater density (having at least |V| c edges for some c > 1), Prim's algorithm can be made to run in linear time even more simply, by using a d-ary heap in place of a Fibonacci heap. [10] [11] Demonstration of proof. In this case, the graph Y 1 = Y − f + e is already equal to Y. In general, the process may need to be repeated.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate