enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  3. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [4]

  4. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.

  5. Bin (computational geometry) - Wikipedia

    en.wikipedia.org/wiki/Bin_(computational_geometry)

    For example, in the top figure, candidate B has 6 elements arranged in a 3 row by 2 column array because it intersects 6 bins in such an arrangement. Each bin contains the head of a singly linked list. If a candidate intersects a bin, it is chained to the bin's linked list.

  6. Balanced histogram thresholding - Wikipedia

    en.wikipedia.org/wiki/Balanced_histogram...

    In image processing, the balanced histogram thresholding method (BHT), [1] is a very simple method used for automatic image thresholding.Like Otsu's Method [2] and the Iterative Selection Thresholding Method, [3] this is a histogram based thresholding method.

  7. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    Another approach is to use Sturges's rule: use a bin width so that there are about + ⁡ non-empty bins, however this approach is not recommended when the number of data points is large. [4] For a discussion of the many alternative approaches to bin selection, see Birgé and Rozenholc.

  8. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    Otsu's method is a one-dimensional discrete analogue of Fisher's discriminant analysis, is related to Jenks optimization method, and is equivalent to a globally optimal k-means [3] performed on the intensity histogram.

  9. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors.The original data values which fall into a given small interval, a bin, are replaced by a value representative of that interval, often a central value (mean or median).