Search results
Results from the WOW.Com Content Network
The cost of a search is modeled by assuming that the search tree algorithm has a single pointer into a binary search tree, which at the start of each search points to the root of the tree. The algorithm may then perform any sequence of the following operations: Move the pointer to its left child. Move the pointer to its right child.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
In order for a tree to function as a search tree, the key for each node must be greater than any keys in subtrees on the left, and less than any keys in subtrees on the right. [1] The advantage of search trees is their efficient search time given the tree is reasonably balanced, which is to say the leaves at either end are of comparable depths ...
In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.
The splay tree is a form of binary search tree invented in 1985 by Daniel Sleator and Robert Tarjan on which the standard search tree operations run in ( ()) amortized time. [10] It is conjectured to be dynamically optimal in the required sense. That is, a splay tree is believed to perform any sufficiently long access sequence X in time O ...
B+ tree node format where K=4. (p_i represents the pointers, k_i represents the search keys). As with other trees, B+ trees can be represented as a collection of three types of nodes: root, internal (a.k.a. interior), and leaf. In B+ trees, the following properties are maintained for these nodes:
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
To search for a given key value, apply a standard binary search algorithm in a binary search tree, ignoring the priorities. To insert a new key x into the treap, generate a random priority y for x. Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist.