Search results
Results from the WOW.Com Content Network
Solvent Violet 13, also known as D&C Violet No.2, oil violet, Solvent Blue 90, Alizarine Violet 3B, Alizurol Purple, Duranol Brilliant Violet TG, Ahcoquinone Blue IR base, Quinizarin Blue, Disperse Blue 72, and C.I. 60725, is a synthetic anthraquinone dye with bright bluish violet hue. It is a solid insoluble in water and soluble in acetone ...
Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 mL of water is equal to approximately 100 g. Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water).
1,4-Diamino-2,3-dihydroanthraquinone is an anthraquinone dye used with Disperse Red 9 in colored smoke to introduce a violet color. It is also used in dyes and marine flares . Synthesis
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Solvent Density (g cm-3) Boiling point (°C) K b ... [1] Water: 100.00 0.512 0.00 –1.86 K b & K f [2] ... [13] tert-Butanol: 82.5 [14] Chlorobenzene:
The following formulas can be used to calculate the volumes of solute (V solute) and solvent (V solvent) to be used: [1] = = where V total is the desired total volume, and F is the desired dilution factor number (the number in the position of F if expressed as "1/F dilution factor" or "xF dilution"). However, some solutions and mixtures take up ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise.
The number of moles of ethanol is 0.2 kg / (0.04607 kg/mol) = 4.341 mol, so that the apparent molar volume is 0.2317 L / 4.341 mol = 0.0532 L / mol = 53.2 cc/mole (1.16 cc/g). However pure ethanol has a molar volume at this temperature of 58.4 cc/mole (1.27 cc/g). If the solution were ideal, its volume would be the sum of the unmixed components ...