Search results
Results from the WOW.Com Content Network
Macroscopic material failure is defined in terms of load carrying capacity or energy storage capacity, equivalently. Li [2] presents a classification of macroscopic failure criteria in four categories: Stress or strain failure; Energy type failure (S-criterion, T-criterion) Damage failure; Empirical failure
The Christensen failure criterion is a material failure theory for isotropic materials that attempts to span the range from ductile to brittle materials. [1] It has a two-property form calibrated by the uniaxial tensile and compressive strengths T ( σ T ) {\displaystyle \left(\sigma _{T}\right)} and C ( σ C ) {\displaystyle \left(\sigma _{C ...
Failure Reporting (FR). The failures and the faults related to a system, a piece of equipment, a piece of software or a process are formally reported through a standard form (Defect Report, Failure Report). Analysis (A). Perform analysis in order to identify the root cause of failure. Corrective Actions (CA).
The Tsai–Wu failure criterion is a phenomenological material failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression. [1] The Tsai-Wu criterion predicts failure when the failure index in a laminate reaches 1.
The Tsai hill criterion is interactive, i.e. the stresses in different directions are not decoupled and do affect the failure simultaneously. [2] Furthermore, it is a failure mode independent criterion, as it does not predict the way in which the material will fail, as opposed to mode-dependent criteria such as the Hashin criterion, or the Puck ...
The T-failure criterion is a set of material failure criteria that can be used to predict both brittle and ductile failure. [ 1 ] [ 2 ] These criteria were designed as a replacement for the von Mises yield criterion which predicts the unphysical result that pure hydrostatic tensile loading of metals never leads to failure.
Drucker's first stability criterion (first proposed by Rodney Hill and also called Hill's stability criterion [2]) is a strong condition on the incremental internal energy of a material which states that the incremental internal energy can only increase.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more