Search results
Results from the WOW.Com Content Network
In chemistry, pH (/ p iː ˈ eɪ tʃ / pee-AYCH), also referred to as acidity or basicity, historically denotes "potential of hydrogen" (or "power of hydrogen"). [1] It is a logarithmic scale used to specify the acidity or basicity of aqueous solutions.
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
From 1901 to 1938, Sørensen was head of the prestigious Carlsberg Laboratory, Copenhagen. [2] While working at the Carlsberg Laboratory he studied the effect of ion concentration on proteins [3] and, because the concentration of hydrogen ions was particularly important, he introduced the pH-scale as a simple way of expressing it in 1909. [4]
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula +. It consists of two hydrogen nuclei , each sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule by
These membranes are up to 0.4 millimeters in thickness, thicker than original designs, so as to render the probes durable. The glass has silicate chemical functionality on its surface, which provides binding sites for alkali-metal ions and hydrogen ions from the solutions. This provides an ion-exchange capacity in the range of 10 −6 to 10 − ...