Search results
Results from the WOW.Com Content Network
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).
In particular, the most common speech coding scheme is the LPC-based code-excited linear prediction (CELP) coding, which is used for example in the GSM standard. In CELP, the modeling is divided in two stages, a linear predictive stage that models the spectral envelope and a code-book-based model of the residual of the linear predictive model.
Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model. [1] [2] LPC is the most widely used method in speech coding and speech synthesis.
A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.
Linear pulse-code modulation (LPCM, generally only described as PCM) is the format for uncompressed audio in media files and it is also the standard for CD-DA; note that in computers, LPCM is usually stored in container formats such as WAV, AIFF, or AU, or as raw audio format, although not technically necessary.
Throwing away more of the data in the signal—keeping just enough to reconstruct an "intelligible" voice rather than the full frequency range of human hearing. The earliest algorithms used in speech encoding (and audio data compression in general) were the A-law algorithm and the μ-law algorithm .
Linear pulse-code modulation (LPCM) is a specific type of PCM in which the quantization levels are linearly uniform. [5] This is in contrast to PCM encodings in which quantization levels vary as a function of amplitude (as with the A-law algorithm or the μ-law algorithm ).
Mixed-excitation linear prediction (MELP) is a United States Department of Defense speech coding standard used mainly in military applications and satellite communications, secure voice, and secure radio devices. Its standardization and later development was led and supported by the NSA and NATO.