Search results
Results from the WOW.Com Content Network
The study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of laws and concepts of physics. physical constant physical quantity physics The natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force.
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.
In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.
Particle displacement, a measurement of distance of the movement of a particle in a medium as it transmits a wave (represented in mathematics by the lower-case Greek letter ξ) Displacement field (mechanics) , an assignment of displacement vectors for all points in a body that is displaced from one state to another
The total wave functions are in the tensor product space of the Hilbert space of the spatial part (which is spanned by the position eigenstates) and the Hilbert space for the spin. Wave function The word "wave function" could mean one of following: A vector in Hilbert space which can represent a state; synonymous to "ket" or "state vector".
In geometry and kinematics, coordinate systems are used to describe the (linear) position of points and the angular position of axes, planes, and rigid bodies. [16] In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as ...
In applied fields the word "tight" is often used with the same meaning. [2] smooth Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion ...