enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    Quantities having dimension one, dimensionless quantities, regularly occur in sciences, and are formally treated within the field of dimensional analysis.In the 19th century, French mathematician Joseph Fourier and Scottish physicist James Clerk Maxwell led significant developments in the modern concepts of dimension and unit.

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.

  4. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Change of acceleration per unit time: the third time derivative of position m/s 3: L T −3: vector Jounce (or snap) s →: Change of jerk per unit time: the fourth time derivative of position m/s 4: L T −4: vector Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the ...

  6. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    For example, if "x" represented mass, the letter "m" might be an appropriate symbol to represent the dimensionless mass quantity. In this article, the following conventions have been used: t – represents the independent variable – usually a time quantity.

  7. Buckingham π theorem - Wikipedia

    en.wikipedia.org/wiki/Buckingham_π_theorem

    Therefore, we have a total of n = 5 variables representing our example. Those n = 5 variables are built up from k = 3 independent dimensions, e.g., length: L (SI units: m), time: T , and mass: M . According to the π-theorem, the n = 5 variables can be reduced by the k = 3 dimensions to form p = n − k = 5 − 3 = 2 independent dimensionless ...

  8. Dimensionless physical constant - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_physical...

    The original Standard Model of particle physics from the 1970s contained 19 fundamental dimensionless constants describing the masses of the particles and the strengths of the electroweak and strong forces. In the 1990s, neutrinos were discovered to have nonzero mass, and a quantity called the vacuum angle was found to be indistinguishable from ...

  9. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Muons, a subatomic particle, travel at a speed such that they have a relatively high Lorentz factor and therefore experience extreme time dilation. Since muons have a mean lifetime of just 2.2 μs, muons generated from cosmic-ray collisions 10 km (6.2 mi) high in Earth's atmosphere should be nondetectable on the ground due to their decay rate ...