enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.

  3. Crack growth equation - Wikipedia

    en.wikipedia.org/wiki/Crack_growth_equation

    The crack growth rate behaviour with respect to the alternating stress intensity can be explained in different regimes (see, figure 1) as follows Regime A: At low growth rates, variations in microstructure, mean stress (or load ratio), and environment have significant effects on the crack propagation rates. It is observed at low load ratios ...

  4. Paris' law - Wikipedia

    en.wikipedia.org/wiki/Paris'_law

    Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor K {\displaystyle K} characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity Δ K {\displaystyle ...

  5. Fastran - Wikipedia

    en.wikipedia.org/wiki/Fastran

    Fastran is a computer program for calculating the rate of fatigue crack growth by combining crack growth equations and a simulation of the plasticity at the crack tip. Fastran models accelerations and retardation and other variable amplitude loading effects in crack growth using a crack closure model.

  6. Crack closure - Wikipedia

    en.wikipedia.org/wiki/Crack_closure

    Hence, the plasticity-induced crack closure under plane stress conditions can be expressed as a consequence of the stretched material behind the crack tip, which can be considered as a wedge that is inserted in the crack and reduces the cyclic plastic deformation at the crack tip and hence the fatigue crack growth rate. [7]

  7. Compact tension specimen - Wikipedia

    en.wikipedia.org/wiki/Compact_tension_specimen

    The stress intensity factor at the crack tip of a compact tension specimen is [4] = [() / / + / / + /] where is the applied load, is the thickness of the specimen, is the crack length, and is the effective width of the specimen being the distance between the centreline of the holes and the backface of the coupon.

  8. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    The rate of growth is primarily driven by the range of cyclic loading although additional factors such as mean stress, environment, overloads and underloads can also affect the rate of growth. Crack growth may stop if the loads are small enough to fall below a critical threshold.

  9. Damage tolerance - Wikipedia

    en.wikipedia.org/wiki/Damage_tolerance

    Crack growth, as shown by fracture mechanics, is exponential in nature; meaning that the crack growth rate is a function of an exponent of the current crack size (see Paris' law). This means that only the largest cracks influence the overall strength of a structure; small internal damages do not necessarily decrease the strength.