Search results
Results from the WOW.Com Content Network
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
For very small samples the multinomial test for goodness of fit, and Fisher's exact test for contingency tables, or even Bayesian hypothesis selection are preferable to the G-test. [2] McDonald recommends to always use an exact test (exact test of goodness-of-fit, Fisher's exact test) if the total sample size is less than 1 000 .
If the likelihood ratio for a test in a population is not clearly better than one, the test will not provide good evidence: the post-test probability will not be meaningfully different from the pretest probability. Knowing or estimating the likelihood ratio for a test in a population allows a clinician to better interpret the result. [7]
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.
To be clear: These limitations on Wilks’ theorem do not negate any power properties of a particular likelihood ratio test. [3] The only issue is that a χ 2 {\displaystyle \chi ^{2}} distribution is sometimes a poor choice for estimating the statistical significance of the result.
In these cases, a posttest probability can be estimated more accurately by using a likelihood ratio for the test. Likelihood ratio is calculated from sensitivity and specificity of the test, and thereby it does not depend on prevalence in the reference group, [2] and, likewise, it does not change with changed pre-test probability, in contrast ...
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
In statistics, Wilks' lambda distribution (named for Samuel S. Wilks), is a probability distribution used in multivariate hypothesis testing, especially with regard to the likelihood-ratio test and multivariate analysis of variance (MANOVA).