enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point. A geometric construction was described by Isaac Newton in his Principia: There being given, in any places, the velocity with which a body describes a given figure, by means of forces directed to some ...

  4. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Curvature is usually measured in radius of curvature.A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is as large as a kilometer or mile, as is needed for large scale works like roads and railroads.

  5. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Historically, the curvature of a differentiable curve was defined through the osculating circle, which is the circle that best approximates the curve at a point. More precisely, given a point P on a curve, every other point Q of the curve defines a circle (or sometimes a line) passing through Q and tangent to the curve at P.

  6. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    Radius of circular curve at the end of the spiral θ: Angle of curve from beginning of spiral (infinite R) to a particular point on the spiral. This can also be measured as the angle between the initial tangent and the tangent at the concerned point. θ s: Angle of full spiral curve L, s: Length measured along the spiral curve from its initial ...

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A curve may have nonzero curvature and zero torsion. For example, the circle of radius R given by r(t) = (R cos t, R sin t, 0) in the z = 0 plane has zero torsion and curvature equal to 1/R. The converse, however, is false. That is, a regular curve with nonzero torsion must have nonzero curvature.

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula

  9. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]