Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
[19] [20] Examples of quotients of dimension one include calculating slopes or some unit conversion factors. Another set of examples is mass fractions or mole fractions, often written using parts-per notation such as ppm (= 10 −6), ppb (= 10 −9), and ppt (= 10 −12), or perhaps confusingly as ratios of two identical units (kg/kg or mol/mol).
For example, if "x" represented mass, the letter "m" might be an appropriate symbol to represent the dimensionless mass quantity. In this article, the following conventions have been used: t – represents the independent variable – usually a time quantity.
Derived quantity Symbol Description SI derived unit Dimension Comments Absement: A: Measure of sustained displacement: the first integral with respect to time of displacement m⋅s L T: vector Acceleration: a →: Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The dimension of a physical quantity is more fundamental than some scale or unit used to express the amount of that physical quantity. For example, mass is a dimension, while the kilogram is a particular reference quantity chosen to express a quantity of mass. The choice of unit is arbitrary, and its choice is often based on historical precedent.
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves.