Search results
Results from the WOW.Com Content Network
The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]
The weighted sample mean, ¯, is itself a random variable. Its expected value and standard deviation are related to the expected values and standard deviations of the observations, as follows. For simplicity, we assume normalized weights (weights summing to one).
A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights.
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
In applied mathematics, methods of mean weighted residuals (MWR) are methods for solving differential equations. The solutions of these differential equations are assumed to be well approximated by a finite sum of test functions . In such cases, the selected method of weighted residuals is used to find the coefficient value of each ...
In data analysis based on the Rasch model, the reduced chi-squared statistic is called the outfit mean-square statistic, and the information-weighted reduced chi-squared statistic is called the infit mean-square statistic.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.