enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    Absorbed amino acids are typically used to create functional proteins, but may also be used to create energy. [3] They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation ...

  4. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  5. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    The malfunction of just one type of enzyme out of the thousands of types present in the human body can be fatal. An example of a fatal genetic disease due to enzyme insufficiency is Tay–Sachs disease, in which patients lack the enzyme hexosaminidase. [101] [102] One example of enzyme deficiency is the most common type of phenylketonuria.

  6. Triosephosphate isomerase - Wikipedia

    en.wikipedia.org/wiki/Triosephosphate_isomerase

    The loss of a high-energy phosphate bond and the substrate for the rest of glycolysis makes formation of methylglyoxal inefficient. Studies suggest that a lysine close to the active site (at position 12) is also crucial for enzyme function. The lysine, protonated at physiological pH, may help neutralize the negative charge of the phosphate group.

  7. Glucokinase - Wikipedia

    en.wikipedia.org/wiki/Glucokinase

    The S 0.5 and h result in an inflection of the curve enzyme activity as a function of glucose concentration at about 4 mM. [15] In other words, at a glucose concentration of about 72 mg/dL, which is near the low end of the normal range, glucokinase activity is most sensitive to small changes in glucose concentration.

  8. Cellulase - Wikipedia

    en.wikipedia.org/wiki/Cellulase

    Ribbon representation of the Streptomyces lividans β-1,4-endoglucanase catalytic domain - an example from the family 12 glycoside hydrolases [1]. Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

  9. Alcohol dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Alcohol_dehydrogenase

    In 1949, E. Racker defined one unit of alcohol dehydrogenase activity as the amount that causes a change in optical density of 0.001 per minute under the standard conditions of assay. [55] Recently, the international definition of enzymatic unit (E.U.) has been more common: one unit of Alcohol Dehydrogenase will convert 1.0 μmole of ethanol to ...