Search results
Results from the WOW.Com Content Network
In mathematical logic, an alternative set theory is any of the alternative mathematical approaches to the concept of set and any alternative to the de facto standard set theory described in axiomatic set theory by the axioms of Zermelo–Fraenkel set theory.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
A set of relations is thus a subset of ()). Replace each well-ordered set with its ordinal. This is the set of countable ordinals ω 1, which can itself be shown to be uncountable. The construction uses replacement twice; once to ensure an ordinal assignment for each well ordered set and again to replace well ordered sets by their ordinals.
Abbreviation for "power (set)" power "Power" is an archaic term for cardinality power set powerset The powerset or power set of a set is the set of all its subsets pre-ordering A relation that is reflexive and transitive but not necessarily antisymmetric, allowing for the comparison of elements in a set. primitive recursive set
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Telescoping series, the use of addition associativity for cancelling terms in an infinite series; A semigroup is a set with an associative binary operation. Commutativity and distributivity are two other frequently discussed properties of binary operations.
If A is the set of odd numbers, then the complement of A is the set of even numbers. If B is the set of multiples of 3, then the complement of B is the set of numbers congruent to 1 or 2 modulo 3 (or, in simpler terms, the integers that are not multiples of 3). Assume that the universe is the standard 52-card deck.
A derived binary relation between two sets is the subset relation, also called set inclusion. If all the members of set A are also members of set B, then A is a subset of B, denoted A ⊆ B. For example, {1, 2} is a subset of {1, 2, 3}, and so is {2} but {1, 4} is not. As implied by this definition, a set is a subset of itself.