Search results
Results from the WOW.Com Content Network
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥ , ♦ , ♣ } form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs , which correspond to all 52 possible playing cards.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Set 3-1 has three possible versions: [0 1 1 1 2 T], [0 1 1 T E 1], and [0 T T 1 E 1], where subscripts indicate adjacency intervals. The normal form is the smallest "slice of pie" (shaded) or most compact form; in this case, [0 1 1 1 2 T ].
In algebra, it is a notation to resolve ambiguity (for instance, "b times 2" may be written as b⋅2, to avoid being confused with a value called b 2). This notation is used wherever multiplication should be written explicitly, such as in " ab = a ⋅2 for b = 2 "; this usage is also seen in English-language texts.
For example, assume that we are given a serial task which is split into four consecutive parts, whose percentages of execution time are p1 = 0.11, p2 = 0.18, p3 = 0.23, and p4 = 0.48 respectively. Then we are told that the 1st part is not sped up, so s 1 = 1 , while the 2nd part is sped up 5 times, so s 2 = 5 , the 3rd part is sped up 20 times ...
For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly.
In the other direction, the binary expansions of numbers in the half-open interval [,), viewed as sets of positions where the expansion is one, almost give a one-to-one mapping from subsets of a countable set (the set of positions in the expansions) to real numbers, but it fails to be one-to-one for numbers with terminating binary expansions ...
Martin Richards, creator of the BCPL language (a precursor of C), designed arrays initiating at 0 as the natural position to start accessing the array contents in the language, since the value of a pointer p used as an address accesses the position p + 0 in memory. [5] [6] BCPL was first compiled for the IBM 7094; the language introduced no run ...