Search results
Results from the WOW.Com Content Network
A function property holds piecewise for a function, if the function can be piecewise-defined in a way that the property holds for every subdomain. Examples of functions with such piecewise properties are: Piecewise constant function, also known as a step function; Piecewise linear function; Piecewise continuous function
Since the graph of an affine(*) function is a line, the graph of a piecewise linear function consists of line segments and rays. The x values (in the above example −3, 0, and 3) where the slope changes are typically called breakpoints, changepoints, threshold values or knots.
The Heaviside step function is an often-used step function. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.
In mathematics, a piecewise function (also called a piecewise-defined function, a hybrid function, or a function defined by cases) is a function whose domain is partitioned into several intervals ("subdomains") on which the function may be defined differently. [1] [2] [3] Piecewise definition is actually a way of specifying the function, rather ...
Yr = A 1.x + K 1 for x < BP (breakpoint) Yr = A 2.x + K 2 for x > BP (breakpoint) where: Yr is the expected (predicted) value of y for a certain value of x; A 1 and A 2 are regression coefficients (indicating the slope of the line segments); K 1 and K 2 are regression constants (indicating the intercept at the y-axis).
Piecewise linear function, a function whose domain can be decomposed into pieces on which the function is linear; Piecewise linear manifold, a topological space formed by gluing together flat spaces; Piecewise linear homeomorphism, a topological equivalence between two piecewise linear manifolds; Piecewise linear cobordism, a cohomology theory
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
We used piecewise linear basis functions in our discussion, but it is common to use piecewise polynomial basis functions. Separate consideration is the smoothness of the basis functions. For second-order elliptic boundary value problems , piecewise polynomial basis function that is merely continuous suffice (i.e., the derivatives are ...