enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  3. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(3) the polynomial x 2 + 1 is irreducible but not primitive because it divides x 4 − 1: its roots generate a cyclic group of order 4, while the multiplicative group of GF(3 2) is a cyclic group of order 8. The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α.

  4. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and let N n be the number of monic irreducible polynomials over F whose degree is equal to n. That is, we are looking at polynomials with coefficients chosen from F, which cannot be written as products of polynomials of smaller degree. In this setting ...

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The number N(q, n) of monic irreducible polynomials of degree n over GF(q) is given by [4] (,) = /, where μ is the Möbius function. This formula is an immediate consequence of the property of X q − X above and the Möbius inversion formula.

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    hide. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the ...

  9. Tschirnhaus transformation - Wikipedia

    en.wikipedia.org/wiki/Tschirnhaus_transformation

    Definition. For a generic degree reducible monic polynomial equation of the form , where and are polynomials and does not vanish at , the Tschirnhaus transformation is the function: Such that the new equation in , , has certain special properties, most commonly such that some coefficients, , are identically zero. [2][3]