Search results
Results from the WOW.Com Content Network
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
Availability Every request received by a non-failing node in the system must result in a response. This is the definition of availability in CAP theorem as defined by Gilbert and Lynch. [1] Note that availability as defined in CAP theorem is different from high availability in software architecture. [5] Partition tolerance
The tradeoff between availability, consistency and latency, as described by the PACELC theorem. In database theory, the PACELC theorem is an extension to the CAP theorem.It states that in case of network partitioning (P) in a distributed computer system, one has to choose between availability (A) and consistency (C) (as per the CAP theorem), but else (E), even when the system is running ...
A clustering with an average silhouette width of over 0.7 is considered to be "strong", a value over 0.5 "reasonable" and over 0.25 "weak", but with increasing dimensionality of the data, it becomes difficult to achieve such high values because of the curse of dimensionality, as the distances become more similar. [2]
High-availability clusters (also known as HA clusters, fail-over clusters) are groups of computers that support server applications that can be reliably utilized with a minimum amount of down-time. They operate by using high availability software to harness redundant computers in groups or clusters that provide continued service when system ...
High availability (HA) is a characteristic of a system that aims to ensure an agreed level of operational performance, usually uptime, for a higher than normal period. [ 1 ] There is now more dependence on these systems as a result of modernization.
In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established ...
High-availability clusters usually use a heartbeat private network connection which is used to monitor the health and status of each node in the cluster. For example, the split-brain syndrome may occur when all of the private links go down simultaneously, but the cluster nodes are still running, each one believing they are the only one running.